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Chaotic natural convection in a differentially heated air-filled cavity of aspect ratio 4 
with adiabatic horizontal walls is investigated by direct numerical integration of the 
unsteady two-dimensional equations. Time integration is performed with a spectral 
algorithm using Chebyshev spatial approximations and a second-order finite-difference 
time-stepping scheme. Asymptotic solutions have been obtained for three values of 
the Rayleigh number based on cavity height up to 1O'O. The time-averaged flow 
fields show that the flow structure increasingly departs from the well-known laminar 
one. Large recirculating zones located on the outer edge of the boundary layers form 
and move upstream with increasing Rayleigh number. The time-dependent solution 
is made up of travelling waves which run downstream in the boundary layers. The 
amplitude of these waves grows as they travel downstream and hook-like temperature 
patterns form at the outer edge of the thermal boundary layer. At the largest Rayleigh 
number investigated they grow to such a point that they result in the formation of 
large unsteady eddies that totally disrupt the boundary layers. These eddies throw 
hot and cold fluid into the upper and lower parts of the core region, resulting 
in thermally more homogeneous top and bottom regions that squeeze a region of 
increased stratification near the mid-cavity height. It is also shown that these large 
unsteady eddies keep the internal waves in the stratified core region excited. These 
simulations also give access to the second-order statistics such as turbulent kinetic 
energy, thermal and viscous dissipation, Reynolds stresses and turbulent heat fluxes. 

1. Introduction 
Natural convection is a recurrent phenomenon in the world around us and most 

of these natural convection flows, especially those encountered in engineering appli- 
cations, are turbulent. Unsteady and turbulent natural convection has thus attracted 
increasing interest over the last decade for two main reasons: on the one hand there 
is a desire to improve our phenomenological understanding of turbulent natural con- 
vection and on the other hand there is a pressing need for numerical models capable 
of predicting the corresponding flow structures and related heat transfer in industrial 
applications. 

Natural convection flows in enclosures are usually subdivided into two main classes, 
those heated from below and those heated from the side. The prototype configuration 
of the latter class is the differentially heated cavity. This configuration models 
many engineering applications such as cooling of electronic components, nuclear 
reactor insulation, ventilation of rooms. It is thus of considerable practical as well as 
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theoretical importance and has therefore become a classical problem in the convective 
heat transfer and fluid mechanics literature. Its two-dimensional modelization, also 
known by the name of a thermally driven cavity, was popularized by the workshop 
organized by de Vahl Davis & Jones (1980), and has also become one of the favourite 
problems for the testing of numerical methods for the resolution of incompressible 
recirculating flows of viscous fluid. In the past years most studies relevant to natural 
convection in cavities have focused on laminar steady and transient flow regimes (de 
Vahl Davis & Jones 1983; Haldenwang 1984; Ivey 1984; Patterson & Imberger 1980; 
Le QuerC 1991 ; Patterson & Armfield, 1990), the transition to unsteadiness and the 
route to chaos (Le QuirC 1987; Le QuCrC & Penot 1987; Paolucci & Chenoweth 1989; 
Henkes 1990; Penot, Ndame & Le QuCrk 1990; Ndame 1992). The corresponding 
conclusions are the following: for small values of the Rayleigh number laminar 
steady natural convection is observed, which, if the cavity aspect ratio is small 
enough, encompasses two sub-regimes, the conduction and the separated boundary 
layer regimes. When the Rayleigh number is increased above a critical value, unsteady 
convection is observed, due to the loss of stability of steady solutions. In air-filled 
cavities of aspect ratios smaller than or equal to 3, two distinct instability mechanisms 
have been found to be responsible for the onset of unsteadiness depending on the 
thermal boundary conditions imposed on the horizontal walls. On the other hand for 
aspect ratio larger than or equal to 4 the onset of unsteadiness is due to the instability 
of vertical boundary layers independently of the boundary conditions imposed on the 
horizontal walls. The onset of unsteadiness proceeds through a bifurcation which is 
of Hopf supercritical type. Subsequent investigations have shown that the route of 
transition to chaos seems to proceed through quasi-periodicity and intermittency (see 
Le QuSrC 1994b for a review). 

In contrast to the Rayleigh-BCnard configuration in which flows become turbulent 
at relatively low Rayleigh numbers and for which direct simulations have long been 
performed (see Lipps 1976 and Grotzbach 1982 amongst others), there have been only 
a few numerical studies of fully chaotic flows in differentially heated cavities. After 
the pioneering work of Fromm (1971), who demonstrated the feasibility of direct 
simulation, the first extensive study seems to be that of Paolucci (1990) who used 
a numerical algorithm in primitive variable formulation and an explicit first-order 
time-stepping code with second-order spatial differencing on a non-uniform grid. He 
performed a numerical simulation of two-dimensional turbulent natural convection in 
a square cavity with adiabatic horizontal walls for a Rayleigh number equal to 1O'O. 
It is noted that the simulation was started from isothermal and quiescent conditions. 
In addition to providing detailed information on the structure of turbulent boundary 
layers and turbulent statistics, he found that the stratification in the core seems to 
achieve a constant dimensionless value of about 0.38. 

We have similarly investigated fully chaotic natural convection in a differentially 
heated air-filled cavity of aspect ratio 4 with adiabatic horizontal walls using direct 
numerical integration of the two-dimensional unsteady Navier-Stokes equations. The 
two-dimensional unsteady equations written in primitive variables formulation under 
the Boussinesq approximation are integrated by a pseudo-spectral code, which has 
been extensively used to investigate transition to unsteadiness and to chaos. This 
algorithm combines spatial expansions in series of Chebyshev polynomials with a 
second-order finite-difference time-stepping scheme. The incompressibility condition 
is ensured by an influence matrix technique. Direct simulations of fully chaotic two- 
dimensional flows were performed for values of the Rayleigh number based on cavity 
height up to 10'' (two orders of magnitude above the critical value corresponding 
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to the onset of unsteadiness), that correspond to weakly turbulent flows in actual 
configurations. 

We chose to perform these simulations in a cavity of aspect ratio 4 for the following 
reasons: the transition to unsteadiness and the route of chaos have been studied in 
detail in this particular configuration and it was therefore natural for us to continue 
with the same aspect ratio; secondly, what happens in a cavity whose sidewalls are 
maintained at constant uniform temperatures is to a large extent determined by the 
Rayleigh number based on cavity height and, consequently, considering a cavity of 
aspect ratio 4 thus allows us to use a small number of Chebyshev polynomials in the 
horizontal direction (by comparison with what would have been needed in a square 
cavity), which is numerically very interesting. These simulations have nonetheless 
required very large spatial resolutions: for a Rayleigh number of lolo, for example, 
it was found necessary to use a 96 x 768 spatial resolution in the horizontal and 
vertical directions respectively. The increase in horizontal direction arises from the 
fact that as the Rayleigh number increases, the boundary layer thickness, which scales 
like Ra-'l4 in the laminar regime, becomes exceedingly small, but since the Gauss- 
Lobatto grid is also very dense near the end points, the number of modes needed to 
maintain a prescribed accuracy scales roughly like Ra'/*. The more dramatic increase 
in the vertical direction is due to the fact that, for increasing Rayleigh number, the 
transition point in the vertical boundary layer moves upstream (its relative location 
in the cavity) and small structures are generated around the mid-cavity height in a 
region where the number of Chebyshev modes needed to capture spatial scales of 
order E scales like 6-l .  

The objectives of these simulations are twofold: to improve our understanding of 
the dynamics of chaotic convection in a differentially heated cavity on the one hand, 
but also to compute the statistical quantities (time-averaged fields, kinetic energy 
of the fluctuating velocity field, viscous and thermal dissipation rates, Reynolds 
stresses, turbulent heat fluxes, etc.) which are needed in conventional approaches 
to turbulence on the other hand. Although direct simulations of the unsteady 
laminar equations, which are at the present time restricted to simple geometries 
and academic configurations, or more likely large eddy simulations could ultimately 
become of general use in industrial applications, it seems clear that the computations 
of turbulent convection for engineering applications will still for a long time be 
achieved through numerical solution of Reynolds-averaged equations closed with 
appropriate turbulence models. Over the last few years turbulence models of increasing 
complexity have been used for turbulent natural convection flows in cavities (Fraikin, 
Portier & Fraikin 1980; Markatos & Pericleous 1984; Ozoe et al. 1986; To & 
Humphrey 1986; Giel & Schmidt 1990; Abrous & Emery 1989; Henkes 1990; 
Nobile, Sousa & Barozzi 1990; Le Breton 1991; Ince, Betts & Launder 1992). 
Accurate predictions of turbulent flows in various configurations seem hopeless in 
the framework of k - E  models even with low Reynolds number corrections and require 
second-moment closure models, which involve modelling of many terms (see Hanjalic 
1994). In order to critically assess the validity of these models, to help understand 
their shortcomings and possibly improve them, it is necessary to obtain data on the 
flow structure and on the turbulence quantities that are used in the models, such 
as turbulence kinetic energy, viscous dissipation, Reynolds stresses or turbulent heat 
fluxes. In view of the difficulty in obtaining data from laboratory experiments in 
configurations with idealized boundary conditions such as those usually considered in 
numerical computations but rarely met in practice (Mergui, Penot & Tuhault 1992) 
and since the flow is very sensitive to these boundary conditions as highlighted by 
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Allard (1992), direct simulations can help provide these data. It is one of our goals 
to contribute to providing these data that will be needed for useful comparisons 
with solutions obtained from classical turbulence modelling approaches. As final 
introductory remarks, let us mention that we are fully aware that two-dimensional 
simulations, no matter how chaotic they might be, cannot reproduce real turbulent 
flows. It is however expected that, in this mildly turbulent regime, two-dimensional 
simulations can reproduce well the dynamics of the large-scale structures of the flow. 

This paper is organized as follows: in the following section, we recall briefly the 
governing equations of the physical problem considered and the numerical algorithm 
used which has already been presented in detail by Le Quir i  (1987, 1991). In $3 we 
present results of the direct numerical simulations, concerning the structure of the 
time-averaged flow field, its dynamics, some second-order statistics and results for the 
heat transfer. Some conclusions will be drawn in $4. 

2. Governing equations and numerical algorithm 
2.1. Governing equations 

We consider a cavity of height H and width W (aspect ratio A = H / W )  filled 
with a Newtonian viscous fluid of thermal diffusivity a and kinematic viscosity v .  
It is submitted to a temperature difference A T  (= Th - T, > 0) at the vertical 
walls (constant uniform temperatures Th and T, are imposed) while the top and 
bottom walls are adiabatic. We assume that the flow in the cavity is governed by the 
two-dimensional unsteady Boussinesq equations. 

These equations are made dimensionless with the following reference quantities : 
L, = H for length, V, = (a/H)Rao,5 for velocity and t ,  = (H2/a)Ra-o.S for time 
where Ra is the Rayleigh number (gBATH3)/ (va) .  It is noted that the above 
reference quantities result in vertical velocity components of order 1. With this set of 
reference quantities and the scaled temperature 0 defined as ( T  - T,) / (  T h  - T,) with 
T, = (Th + Tc)/2,  the governing unsteady Boussinesq equations in primitive variables 
read 

au aw 
ax  aZ - + - = o ,  

au au au a p  P r  a2u a2u 
- +u- + w -  = -- + - 
at a x  a Z  a x  Ra0.5 (a + p) 9 

ao ao ao 1 a 2 0  a% 
a t  a x  aZ Ra0.5 ( a x 2  + s) 9 

+ u - + w - = -  - - 

where u and w are the horizontal and vertical velocity components respectively, P r  is 
Prandtl number (= v / a )  and P is the pressure deviation from the hydrostatic pressure 
made dimensionless with the mean density multiplied by V,'. The problem (2.1) is then 
defined on the computational domain that extends from 0 to 1/A in the x-direction 
and from 0 to 1 in the z-direction. The boundary conditions are 

u and w = 0 on all four walls, 
0 = 0.5 on x = 0 and 0 = -0.5 on x = 1/A, 0 6  z 6 1, 
a @ / &  = 0 on z = 0 and 1, OG x d 1/A. 

In dimensionless form the configuration depends on three parameters : the Prandtl 
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number, the cavity aspect ratio and the Rayleigh number. If we furthermore consider 
that the cavity is filled with air corresponding to a Prandtl number of 0.71 and that 
its aspect ratio is equal to 4, the configuration at hand then solely depends on the 
Rayleigh number. 

2.2. Numerical algorithm 
The two-dimensional unsteady Boussinesq equations are then integrated in velocity- 
pressure formulation by a pseudo-spectral algorithm combining spatial expansion in 
series of Chebyshev polynomials with a semi-implicit second-order finite-difference 
time-stepping scheme. 

2.2.1. Spatial discretization 
Spatial discretization is based on the use of tensor products of Chebyshev polyno- 

mials Ti(2Ax- 1 )  x Tj (2z-  1 )  as basis expansion functions; f(x, z ,  t ) ,  a two-dimensional 
field representing one of the four dependent variables u, w,  P and 0, is then expressed 
in a double truncated series as follows: 

N M  

i=O j=O 

where Ti(x) = cos(iarccos(x)). The spectral coefficients f i j  are obtained by using the 
discrete orthogonality relationship: 

where XI and z, are the Gauss-Lobatto points, { XI = (1 - c o s ( d / N ) ) / ( 2 A ) ,  l = 0, . . ., 
N } and { z ,  = (1 -cos(nm/M)) /2 ,  m = 0, ..., M }; Eo = EN = 2,Ei = 1 ,  0 < i < N .  

2.2.2. Time discretization 
The time discretization scheme used is classically of finite-difference type. We note 

that the use of Chebyshev polynomials as basis functions requires an implicit or semi- 
implicit treatment of the viscous or diffusion terms and while the nonlinear terms are 
generally discretized explicitly. Here the time-stepping scheme combines a second- 
order backward Euler scheme for the diffusion terms with an explicit second-order 
Adams-Bashforth extrapolation for the nonlinear terms (Vanel, Peyret & Bontoux 
1986). When applied to a scalar advection-diffusion equation such as 

- + + * V f = V 2 f  af 
at 

this scheme reads 

which can be cast in a Helmholtz equation for the unknown f n + l  
V2f"+' - 3,f"+l = s, 

where 3, = 3/(2At) .  The source term S, of this equation is made up of all the 
known quantities at the previous time levels nAt and (n - 1)At. The nonlinear term 
V Vf is classically calculated in physical space at the Gauss-Lobatto points and 
then transformed into spectral space, since the resulting Helmholtz equation is solved 
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in spectral space using the tau-method and the partial diagonalization technique 
proposed by Haidvogel & Zang (1979). 

2.2.3. Incompressibility 

When the above 
equations read 

time-stepping scheme is applied to problem (2.1), the resulting 

where S,, S ,  and Ss are given respectively by 

with C, = Ce = 0 and C, = 1. 
The first three equations of (2.2) constitute an unsteady Stokes problem that has 

to be solved at every time step. By taking the divergence of the two momentum 
equations of the Stokes problem we get 

as,, as, 
ax aZ (Pr/Rao.S)V2D"+' - AD"+' = - + - + V2P 

where D = du/ax + aw/az. Assuming the flow is divergence free at n + 1 yields the 
classical Poisson equation for pressure : 

It is clear that when this Poisson equation for the pressure field holds the flow 
divergence verifies ( P ~ / R U ~ . ~ ) V ~ D " + '  - RD"+I = 0 and the flow is divergence free if 
and only if D"+l = 0 at the boundary of the computational domain, i.e. on the cavity 
walls. The essence of the influence or capacitance matrix technique is to supplement 
the Poisson equation for pressure with Dirichlet boundary conditions that warrant 
D"+l = 0 on the cavity walls. These Dirichlet boundary conditions for pressure can be 
determined efficiently in one iteration only since the relationship between the pressure 
on the cavity walls and the divergence is linear. This influence matrix technique was 
proposed by Kleiser & Schumann ( 1980) for the one-dimensional Chebyshev problem 
and extended to a two-dimensional Chebyshev configuration by Le Quirk & Alziary 
de Roquefort (1982, 1985). Note however that, due to the non-commutativity of the 
discrete divergence and tau-projection operators (see Haldenwang 1986), the velocity 
field is not divergence free in the interior of the computational domain. Recently, 
Tuckerman (1989) proposed a complete divergence-free method based on the use of 
the Shermann-Morrison-Woodbury formula. The computations reported below were 
performed with the initial version of the algorithm but the residual error was kept 
small enough to ensure very accurate solutions. 
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3. Results 
The presentation of the results will be done in five subsections: we first discuss 

the numerical characteristics of the time integrations; we then present the time- 
averaged flow structures, the flow dynamics, some ‘turbulent’ statistics and heat 
transfer coefficients in the second, third, forth and fifth subsections, respectively. 

3.1. Numerical requirements 
Over the past few years the appearance of unsteadiness and the transition to chaos of 
flows in an air-filled cavity of aspect ratio 4 have been numerically and experimentally 
studied in detail (Le QuCrC 1987; Le Quire & Penot 1987; Penot et al. 1990; Ndame 
1992). It was shown that the flow in the cavity undergoes a supercritical Hopf 
bifurcation at a Rayleigh number based on cavity height of 1.03 x lo8. For small 
supercritical values the flow is periodic in time and the unsteadiness is due to an 
absolute instability of the vertical boundary layers. (Note that this absolute instability 
occurs long after the vertical boundary layers have become convectively unstable.) 
Chaotic behaviour is first observed at a Rayleigh number of 2.3 x lo8, which shows 
that the transition to chaos takes place over a relatively small range of Rayleigh 
number. This chaos is however only temporal chaos that is present in the time traces 
of temperature or velocity signals but cannot be distinguished in the spatial structure 
of the flow which is still very well organized. 

In order to approach chaotic flows which exhibit randomness in space as well as 
in time, it was decided to perform simulations for Rayleigh numbers up to 1O’O (2 
orders of magnitude higher than the critical value) and to forget about details of 
transition to chaos. As usual, these simulations are started from a solution obtained at 
a lower Rayleigh number as the initial condition. It is thus necessary to integrate the 
unsteady Boussinesq equations long enough in time so that the transient effects have 
died out and the asymptotic state is reached. This requires an a priori knowledge 
of the time needed for the flow to reach its asymptotic state. It has been shown 
by Patterson & Imberger (1980), that for the laminar separated boundary layer 
regime, the approach to steady state is characterized by internal wave motion in 
the core and that the time needed to damp the waves which are generated in the 
transients is approximately 0.1 xRuO.~ in the time unit considered here, a very long 
time indeed. There is however no indication that this time scale is also the time 
needed to obtain the asymptotic motion in the fully chaotic regime and one should 
in fact anticipate a much smaller time scale for two reasons: first, large eddies of 
the chaotic motion enhance long-scale mixing by comparison with molecular viscous 
or thermal diffusion; second, and perhaps more importantly as will be shown below, 
internal wave motion becomes intrinsically part of the asymptotic motion in these 
fully chaotic regimes. Consequently, the time scale O . I X R U ~ ~ ~ ,  which is the time 
needed to damp these waves, becomes irrelevant for the flow regimes considered 
here. Our numerical experiments have indeed confirmed that this time scale is much 
smaller in the fully chaotic regime than for the steady laminar regime. When one 
feels confident that the asymptotic solution has been reached, one has furthermore to 
integrate long enough to obtain accurate time-averaged solutions and second-order 
statistics. Although it is not known for how long the unsteady Boussinesq equations 
have to be integrated in order that numerical results obtained be independent of time 
integration, it is clear that the higher the order of desired statistics the longer one has 
to integrate. Xin (1993) reported in detail the care taken in this respect and it was 
shown that at least the time-averaged fields we present below are time-integration 
independent. This required integrating the equations over a few hundreds of time 
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Ra Spatial Time Total 
resolution step time 

6.4 x lo8 64x 128 2.Ox lop3 400.0 
2.0 x lo9 64x256 1 . 5 ~ 1 0 - ~  350.0 
1.0 x 1Olo 96x768 8 . 0 ~ 1 0 ~ ~  250.0 

TABLE 1.  Calculation parameters 

units which corresponds to several hundreds of thousands of time steps since the 
explicit treatment of the nonlinear convective terms results in a conditionally stable 
algorithm. For the largest value of the Rayleigh number that was investigated, the 
time step was 8 x and since the period of the basic travelling wave frequency 
in the boundary layers is approximately 0.4, this means that about 500 time steps are 
required for one travelling wave period. This ensures a very accurate time integration, 
which ensures a good accuracy of the low-order statistics (see Hussaini, Speziale & 
Zang 1989). 

As far as spatial resolution is concerned, the number of Chebyshev polynomial 
has to be increased to resolve all the smallest scales of the flow, since otherwise the 
time integration becomes unconditionally unstable as is often the case with spectral 
methods. This results in a difficult situation, particularly and paradoxically enough in 
the vertical direction, since the transition point in the vertical boundary layers moves 
upstream with increasing Rayleigh number. Small structures are thus generated 
around the mid-cavity height, where the number of Chebyshev polynomials needed 
to resolve spatial scales of O(e) varies like € - I .  Small time steps and large spatial 
resolutions result in very expensive computations. To fix ideas, the integration at a 
Rayleigh number of 1O'O has required more than 200 hours of CPU time on a VP200, 
which is a 500 MFlops class machine. 

We list in table 1 spatial resolutions, time-step values and the total integration times 
used. For the largest Rayleigh number considered, we have used a 96x768 spatial 
resolution and integrated for a total time of 250 (in units of convective time). The 
time-averaged solutions and second-order statistics have been obtained over a time 
of 150, while Paolucci (1990) integrated from isothermal and quiescent conditions as 
initial condition for a total time of 100 and computed turbulent statistics over the 
final 30 time units in the square cavity at Ra of 10". 

3.2. Time-averaged flow structure 
Time-averaged fields are obviously important quantities for several reasons : they 
indicate the global structure of the flow and they are quantities which are computed 
in the conventional approaches to turbulence based on Reynolds averaging. In figure 
1 we display the time-averaged solutions for values of Ra of 6.4 x lo8, 2 x lo9 and 1O'O. 
These time-averaged fields were obtained by averaging over the total integration times 
indicated in figures 6, 7 and 8. Although the range of Rayleigh number investigated 
is relatively wide, it seems at first sight that these solutions differ very little. They 
share the usual flow features: thin vertical boundary layers, a stratified core region 
and recirculating structures near the downstream corners. A closer inspection reveals 
however that the solutions for the first two Rayleigh numbers still show basically the 
same flow structure as that found in the steady laminar regime, except perhaps the 
formation of a stronger recirculating flow region in the upper left corner of the cavity. 
On the other hand the flow structure for the highest Rayleigh number considered 
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FIGURE 1. Time-averaged solutions: Ra = 6.4 x lo8 (a), 2 x lo9 ( b )  and loLo (c ) .  For each solution 
the temperature is on the left and the streamlines are on the right. For temperature fields, the 
isovalues are k0.4, k0.3, k0.2, kO.1 and 0.0, while for the streamlines, the isovalues are respectively 
0.0016, 0.0048, 0.008, 0.0112, 0.0144, 0.0176, 0.0208, 0.024 and 0.0272 for Ra = 6.4 x lo8, 0.0014, 
0.0042, 0.007, 0.0098,0.0126, 0.0154,0.0182,0.021 and 0.0238 for Ra = 2. x lo9, and 0.0012, 0.0037, 
0.0062, 0.0087, 0.0112, 0.0137, 0.0162, 0.0187 and 0.0212 for Ra = 1O'O. 

is somewhat different from the other two. The recirculating structure has moved 
upstream and the boundary layer has also appreciably thickened in the downstream 
part. This sudden thickening corresponds to a strengthening of horizontal motion 
and a weakening of vertical motion - a sudden decrease of the wall shear stress 
(figure 2) in comparison with upstream flow. This happens at the location where the 
waves travelling downstream of the boundary layer have grown to a point where they 
totally disrupt these boundary layers and large eddies are ejected from the boundary 
layer. The location of this recirculating structure moves upstream with increasing 
Rayleigh number and for Ra of 1O'O it is located in the mean around z = 0.7. 

Likewise, examination of the temperature fields shows that the core region still 
displays a uniform stratification for the first two Rayleigh numbers. For the last one, 
the top and bottom parts of the core region become much more isothermal and the 
vertical temperature profile at mid-width (figure 3) shows that the vertical temperature 
gradient at mid-height is now larger than 1 (the average stratification is 1.2 in units 
of A T / H  for 0.4 d z d 0.6). This change in the structure of the temperature field is 
the result of the large unsteady eddies which are located in the mean around z m 0.7. 
These large eddies throw hot fluid into the upper parts of the core whereas hot fluid 
was thrown along the ceiling at a lower Ra value. The efficient mixing due to the 
large unsteady eddies results in almost isothermal hot upper and cold lower regions 
of the core respectively. Consequently most of the vertical temperature drop in the 
core occurs in a region around mid-height which shrinks as the Rayleigh number 
increases. An overall conclusion is that, over the range of Ra values investigated, the 
dimensionless stratification at mid-cavity height remains larger than 1 at Ra of 1O'O 
which disagrees with what was observed by Paolucci (1990). Let us mention that this 
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FIGURE 2. Dimensionless time-averaged wall shear stress (8 W / a x )  scaled by Ra’/4, 
i.e. Ra-1/4 x (dW/ax) .  

0 0.2 0.4 0.6 0.8 1.0 
z 

F~GURE 3. Vertical temperature profile at mid-width. Ra-values as figure 2. 

discrepancy cannot be attributed to an aspect ratio effect, since the same result was 
later obtained in a square cavity (Le QukC 1994a,b; Xin & Le Quirk 1994). The 
increased stratification observed for the largest Ra is however in good agreement with 
the fact that some solutions obtained with k-e models also show such an increase of 
the stratification for Ra values in the range l@-lOIO (Henkes 1990; Nobile et al. 1990; 
Le Breton 1991) before it eventually decreases to much smaller values (Henkes 1990). 
Let us also point out that the increase of stratification has never been observed in real 
experiments and is therefore probably strongly linked to the assumption of adiabatic 
top and bottom walls, which are academic boundary conditions that are never met 
in practice. In experimental set-ups, the actual boundary conditions which have been 
measured show that the temperature distribution corresponds to boundary conditions 
between adiabatic walls and perfectly conducting walls (Mergui et al. 1992). Another 
possible source of discrepancy is obviously three-dimensional effects. 

Profiles of the time-averaged vertical velocity component at several vertical positions 
are displayed in figure 4. They show that the velocity maxima remain constant and 
that the boundary layers get thinner as Ra increases. The right-hand sides of the 
figure also show that, when scaled with R d 4 ,  all profiles over the first 60% of the 
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RGURE 4. Temperature (a) and vertical velocity (b )  profiles at z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 
and 0.9 (from bottom to top) for Ra = 6.4 x lo8 (-), 2 x lo9 (--) and 1Olo (- 9 -.). For the 
plots on the left, the abscissa is 4x (i.e. the dimensionless width is 1) whereas for the plots on the 
right, the abscissa is 4xRa1I4. 

boundary layer collapse on the same profile. This confirms that even for the highest 
Ra investigated more than half of the vertical boundary layer is still laminar or 
quasi-laminar. 

It would obviously be of utmost interest to check the validity of the scaling laws 
proposed by George & Capp (1979), who derived -; and power laws respectively 
for temperature and vertical velocity in the buoyant sublayer. These laws were 
established under the assumption of fully developed turbulent boundary layers and it 
is clear that, even for the largest Ra value of lolo, the flow regime has not yet reached 
such a state of developed turbulence. We therefore believe that such a comparison is 
not very meaningful for the present results. 

3.3. Flow dynamics 
3.3.1. Instantaneous flows 

We have discussed so far the global characteristics of the flow structure given by the 
time-averaged fields, which increasingly depart from the corresponding structure for 
the laminar regime. In addition the direct simulations give access to the instantaneous 
features of the flow and temperature fields and give some insight into the dynamics 
of chaotic natural convection and the physical mechanisms involved. 

Time sequences of instantaneous temperature fields visualized in interferogram 
form are displayed in figure 5. At Ra = 6.4 x los, which is 6 times above the critical 
value, one notes periodic oscillations of the isotherms in the downstream parts of 
the boundary layers, which corresponds to the primary instability mechanism, in the 
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XJRE 5.  Time sequence of 
( h )  

instantaneou, 
R a = 2 x  10 

s temperature fields at ( a )  Ra = 6.4 x lo8, ’, ( c )  Ra = 1O’O. 
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form of Tollmien-Schlichting waves. One also notes that rather large fluctuations 
are observed in the two downstream corners of the cavity, but the cavity core is still 
motionless and well stratified. Despite the large fluctuations which invade the top 
and bottom parts of the cavity core and which correspond to time signals which are 
very chaotic, the flow is far from what can be called turbulent. At Ra = 2 x lo9, 
the oscillations of isotherms in the downstream part of the boundary layer become 
more irregular and large eddies are formed there and ejected into the cavity core. The 
stratified cavity core is no longer motionless and the isotherms oscillate periodically 
around their mean horizontal position. At Ra = 10" both phenomena become more 
marked: large eddies appear around z = 0.6 near the hot vertical wall and most of the 
cavity core is in motion. With increasing Ra the cavity core thus appears increasingly 
disorganized and the region of uniform stratification shrinks accordingly. This seems 
to contradict Paolucci's finding of a relatively quiescent and weakly stratified core 
region in the square cavity. As can be seen, large chaotic eddies invade the core region 
at the highest Rayleigh number, but the boundary layers remain almost laminar in 
their upstream part which agrees very well with the experimental results of Giel & 
Schmidt (1990) in a cavity of aspect ratio 10 filled with water. The large eddies which 
are ejected from the boundary layers result in the formation of hook-like patterns 
of the temperature field which have also been found experimentally and numerically 
(Steinberner & Reineke 1978; Paolucci 1990). 

3.3.2. Time traces, power spectra and probability density distributions 

Typical time traces of temperature and velocity that will be presented in the 
following correspond to points labelled A (A x x = 0 . 1 4 7 , ~  = 0.85), B ( A  x x = 
0 . 0 3 8 , ~  = 0.85) and D (A x x = 0 .038 ,~  = 0.778) for the two extreme Rayleigh 
values of 6.4 x lo8 and 10" and A, B and C (A x x = 0.038,~  = 0.725) for the 
intermediate value of 2 x lo9. These points are located in the downstream part of 
the hot boundary layer and it can be seen from figure 4 that B, C, D are located 
around the location of the velocity maximum while A, which is at the same elevation 
than B, is located at the outer edge of the boundary layer. At a Rayleigh number 
of 6.4 x lo8, the high frequency of the sidewall boundary-layer instability still clearly 
shows up in the time signals (figure 6) despite the chaotic behaviour. One however 
notices that the time traces at point A clearly exhibit an intermittent character: the 
high-frequency travelling wave boundary layer instability is modulated by a very low 
frequency. As low-frequency phenomena correspond to large structures, the very low 
frequency is possibly due to the weak motion which takes place in the top part of 
cavity core. Time signals obtained at A, B and C for a Rayleigh number of 2 x lo9 
are displayed in figure 7. At point C, which is located most upstream, despite the 
presence of very large fluctuations, the signals display the high-frequency oscillations 
characteristic of the travelling wave instability. These high-frequency oscillations are 
still visible intermittently at point B further dowstream, but it is clear that the signals 
are now characterized by fluctuations of much smaller frequency. At point A, which 
is almost in the core, the high-frequency oscillations are almost never seen and the 
signals are dominated by very low-frequency intermittent oscillations. The origin of 
these very low-frequency oscillations at points B and A is linked to the formation of 
the large eddies which are ejected from the boundary layer into the core, and this 
Rayleigh value really corresponds to the onset of the fully chaotic regime. For the 
highest Rayleigh number considered, the high frequency of sidewall instability has 
almost completely disappeared from the temperature and velocity traces (figure 8) at 
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FIGURE 6. Time traces of temperature and velocity at (a )  A (4x = 0.147, z = 0.8535), 

( b )  B (4x = 0.038, z = 0.8535), (c) D (4x = 0.038, i = 0.778): Ra = 6.4 x 10'. 

the given monitoring locations because these points are located downstream of the 
location where large eddies have been generated and expelled into the core. 

To summarize, with increasing Rayleigh number, time traces of temperature and 
velocity become increasingly chaotic. The increased irregularity in the signals is due 
to the fact that the same dimensionless position in the cavity corresponds to physical 
locations of increasing local Rayleigh number at which instabilities have reached 
different stages in their development and the high frequency of sidewall instability 
disappears in the downstream part of the boundary layer because of the large eddies 
which completely tear up the boundary layer and the travelling waves. 

Density power spectra of the temperature traces are displayed in figures 9 and 10 
for Rayleigh numbers of 2 x lo9 and lolo. These power spectra show broadband 
components with no really predominant frequency and a large part of the energy is 
contained in low-frequency modes. For Ra = 2 x lo9, at A and B the high-frequency 
sidewall instability does not show up in the spectrum although it can be seen in the 
corresponding time traces. This frequency however shows up at the lowest location C 
but we also note the importance of some low frequencies corresponding to the very 
large but rare fluctuations. As indicated by the time traces, at Ra of 10" the high 
frequency is not observed at A, B and D. Low frequencies contain the major part of 
the energy of the signals. The power spectra of the velocity signals yield the same 
conclusions. 

In figures 11 and 12 are displayed the probability density distributions of temper- 
ature and velocity obtained for the two highest Rayleigh numbers investigated at the 
selected locations: A, B, C and D. The probability density distribution, P ( f o ) ,  of a 
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FIGURE 7. Time traces of temperature and velocity at (a) A (4x = 0.147, z = 0.8535), 
( b )  B (4x = 0.038, z = 0.8535), (c) C (4x = 0.038, z = 0.725): Ra = 2. x lo9. 

time trace f ( t ) ,  is defined as the fraction of the time where f o  d f < fo  + df and one 
has JrmP(f) df = 1. It is clear from figures 11 and 12, in which the vertical lines 
indicate the time-averaged values, that the probability density distributions are not 
symmetrical with respect to the time-averaged values because the cavity walls and the 
stratification in the cavity core region are important sources of flow anisotropy. In 
particular wall effects are clearly seen in the p.d.f. of u, the horizontal component of 
velocity. We first note that the value of u corresponding to the maximum probability 
density is smaller than the time-averaged value and that the largest negative fluctua- 
tions are smaller than the positive ones. It is also noted that the time-averaged values 
are very close to zero since close to the wall the fluid flows vertically and negative 
fluctuations thus correspond approximately to the negative u values. It is thus clear 
that the presence of the wall prevents the occurrence of large negative fluctuations 
of u whereas there is no such constraint on the positive ones. This explains why u 
spends most time at a level lower than the time-averaged value so as to balance the 
largest positive fluctuations. 

3.3.3. Internal waves 
Figure 5 shows that for the highest two Rayleigh numbers considered most of the 

cavity core is in motion and the isotherms in the core oscillate around their mean 
horizontal position. Since the cavity core is well stratified this phenomenon can 
tentatively be ascribed to internal waves and it is therefore suggested that the large- 
amplitude fluctuations due to the sidewall boundary layer instability are capable 
of permanently exciting the internal waves which oscillate at their characteristic 
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FIGURE 8. Time traces of temperature and velocity at ( a )  A (4x = 0.147, z = 0.8535), 
(b)  B (4x = 0.038, z = 0.8535), (c) D (4x = 0.038, z = 0.775): Ra = lolo. 

frequency. Patterson & Imberger (1980) indeed showed that the stratified core 
region of the cavity is capable of sustaining internal wave oscillations, which, if 
not permanently forced, are damped through viscous effects. This assumption can 
be checked by looking at the mean Nusselt number Nu, through the vertical mid- 
plane, which is known to well characterize the wave motion in the core. Time traces 
of Nu,, displayed in figure 13, indeed exhibit almost periodic oscillations and the 
fundamental frequencies obtained from their power spectra are 0.130 for Ra = 2 x lo9 
and 0.137 for Ra = 1O'O. These oscillation frequencies should be compared with the 
characteristic dimensional Brunt-Vaisala frequency: f~ = (gPCAT/H)o.5 / (2n)  where 
C is the dimensionless stratification of the time-averaged temperature fields in the 
core region (measured in units of A T I H ) .  In the present time unit, the dimensionless 
Brunt-Vaisala frequency reads: N = (CPr)o.5/(2n) .  Taking into account the actual 
stratification in the core, the dimensionless Brunt-Vaisala frequency is 0.134 for 
Ra = 2 x lo9 and 0.147 for Ra = lolo. The agreement between both sets of values is 
good and supports the assertion that internal waves do get permanently excited by 
the waves propagating in the sidewall boundary layers, or perhaps more accurately, 
by the large structures which are ejected from the boundary layers. 

This is to our knowledge the first clear evidence that the excited internal wave 
motion is intrinsically part of the asymptotic flow regime. It means that the excitation 
of the internal waves is certainly one of the characteristic features of fully chaotic 
natural convection in differentially heated cavities. Although the role played by 
internal waves in these flows is still not clear, it is certainly very important. As 
pointed out by Stuhmiller (1979), turbulent buoyant flows in a gravitational field 
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Density power spectra of temperature at (a )  A, (b )  B and (c) C FlGURE 9. for Ra = 2 x lo9. 

possess the following unique characteristics : the presence of internal waves; Bow 
anisotropy created by stratification, resulting in a preferred direction of fluid motion; 
and a tendency to a two-dimensional structure. Since it is well known that internal 
wave motions are dispersive but only weakly dissipative, the passage of an internal 
wave through a stably stratified region has no effect on the density profile but 
internal waves do interact with non-wave flows and cause a momentum exchange and 
therefore an energy exchange. It would thus be of interest to determine how much 
energy is carried by the internal waves in comparison with the energy that cascades 
to the small scales. The answer to this question will tell us whether this feature needs 
to be taken into account in the turbulence models developed for differentially heated 
cavities, as has been done for other configurations (Uitenborgaard & Baron 1989). 

It is still not clear at which Rayleigh value these internal waves get excited for the 
first time. It is well known that if one excites a linearly stratified fluid at rest with a 
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RGURE 10. Density power spectra of temperature at (a) A, (b )  B and (c)  D for Ra = 10". 

frequency o, internal waves are generated only if w < N and the dispersion relation 
reads w2 = N2(1 - k5/k2), where k, is the vertical component of the wave vector k. 
These waves then propagate at an angle 8 such that 8 = arccos(w/N) (see e.g. Lighthill 
1978 or Craik 1985). The Brunt-Vaisala frequency is thus the maximum frequency 
of the internal waves that can be observed. In our case the forcing mechanism 
is due to the travelling wave instability of the vertical boundary layers, which are 
characterized, when they first appear, by a dimensionless frequency larger than the 
Brunt-Vaisala frequency, and cannot therefore excite the internal waves. This is to 
be contrasted with what happens in a square cavity in which the first instability is 
characterized by a dimensionless frequency smaller than the Brunt-Vaisala frequency 
and in which internal waves can be observed in the core region right at the onset of 
unsteadiness (see Le Qukrk & Behnia 1994). In the present configuration, one has 
therefore to increase the Rayleigh number up to a point when successive bifurcations 
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FIGURE 11. Probability density distribution at (a )  A, ( b )  B and (c) C for Ra = 2 x lo9. 

and nonlinear interactions have produced frequencies in the time spectra smaller than 
the Brunt-Vaisala frequency. In other words this corresponds to the appearance 
of eddies of sufficiently large scale so as to be characterized by frequencies smaller 
than the Brunt-Vaisala frequency. It is thus clear that the permanent excitation of 
the internal waves is due to the large eddies which are the result of the non linear 
interactions of the travelling waves in the boundary layers. This drain of energy 
from the eddies to the internal waves probably has important consequences for the 
dynamics of the solution and its turbulent characteristics. 

3.4. 'Turbulent' statistics 
Second-order statistics have been computed for the two simulations at the highest 
Rayleigh numbers over integration periods corresponding to the time evolutions 
shown in figures 7 and 8. Because these simulations are only two-dimensional and it 
is quite clear that the flow is not yet in a state which is fully turbulent, the results 
presented in this section should be taken qualitatively and as an assessment of the 
methodology. They nevertheless can give some indications of the magnitude of the 
fluctuating components and of some spatial correlations. 

Figures 14 and 15 present respectively for Ra = 2 x lo9 and Ra = 10" the 
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FIGURE 12. Probability density distribution at (a) A, (b)  B and (c) D for Ra = 1O’O. 

Reynolds stresses, the temperature variance 0’2, the turbulent kinetic energy k = ;a, its viscous dissipation rate E ,  = ( 8 u : / d ~ ~ ) ~ ,  the turbulent thermal dissipation 
ce = ( ~ @ ’ / J X ~ ) ~  and the turbulent heat fluxes ui0 ’ .  These plots confirm, as expected, 
that these characteristic quantities of ‘turbulent’ fluctuations are only significant in the 
downstream part of vertical boundary layers. They also make clear that, even for what 
can be considered as a large Ra value, an important part of the flow - the upstream 
part of the boundary layer and a large part of the core - remains laminar. This seems 
typical of this type of configuration for a large range of practical applications and 
refined turbulence models should be able to predict this feature without too much a 
priori knowledge on the location of the transition point. They show that the turbulence 
intensity increases with Ra and so does the region of ‘turbulent’ fluctuations larger 
than a given threshold. They also show that, as Ra increases, because -- the transition 
point of boundaxlayers moves upstream the location of maxima of uQ, w ’ ~ ,  turbulent 
kinetic energy, @I2, E, and ee moves upstream, but the maxima of viscous turbulent 
dissipation and thermal dissipation always remain -- at the vertical walls. 

It is clear from the plots that the pairs ( w ’ ~ ,  O Q ) d Z ,  c,), (012, ce) and (Ev, ee )  
are well correlated in space whereas the pairs (u’z, w ’ ~ )  and (k, c,) are not. w ’ ~  and 

- 



110 S.  Xin and P. Le Qutrt  

(a) 
85 

70 

55 
Nu, 

I I I 1 I 1 I I I I 1 1 

0 40 80 120 160 200 240 
Time 

0.13 
I 

0 0.5 1 .o 1.5 2.0 2.5 3.0 
Frequency 

160 

I20 

80 
Nu, 

M 
I I 1 I I 1 1 7" 

0 20 40 60 80 100 120 140 
Time 

0.137 

0 0.5 1 .o 1.5 2.0 2.5 3.0 
Frequency 

FIGURE 13. Time traces of Nusselt number at the vertical mid-plane (Ra = 2 x lo9 (a) and 
Ra = 10" (b) )  and the corresponding power spectra. 



Chaotic natural convection in a cavity 111 

(4 

+ 
m To 60.0 

rn 20.0-40.0 rn 10.0-20.0 
B 6.0-10.0 

= 40.9-60.0 
3.0-6.0 
1.5-3.0 
0.8-1.5 

0 Bot 0.8 

I I 

--t 

I To 1.934 
1.695- 1.934 

B S  1.451-1.693 
1.209-1.451 

B 0.967- I .209 
0.725-0.967 
0.484-0.725 
0.242-0.484 
0 Bot 0.242 

c 

W To 1.498 = 1.31?-1.498 
E 1.123-1.311 
B 0.936-1.123 

0.749-0.936 
0.562-0.749 
0.374-0.562 
0.187-0.374 
0 Bot 0.187 

FIGUR 

d 

To 70.0 = 40.9-70.0 
20.c40.0 m 10.0-20.0 

€3 6.&10.0 
3.0-6.0 
1.S3.0 
0.8- 1.5 

0 Bot 0.8 

t 

= To 0.300 
0.208-0.300 
0.150-0.200 
0.1WO. 150 

n -O.IWO.IOO - 
-0.150-0.100 

-0.3W-0.200 
Bot -0.300 

-0.200--0.150 

14 (a.b). For caption see next page 

- 
possess their maxima near the vertical walls, while the location of maximum 

amplitude of is well outside the boundary layer. This shows that the anisotropy of 
the velocity fluctuations (very close to the walls u’ behaves as x2 but w’ as x where x is 
the distance to the wall) extends well outside the viscous sub-layer. Sufficiently close 
to the wall, due to the anisotropy behaviour and the Dirichlet boundary conditions of 
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velocity components, the viscous dissipation rate 6, is mainly contributed by 13w'lax. 
Since at the vertical walls 0' is zero, the same is also true for the thermal dissipation 
rate, because close to the isothermal vertical walls, the leading term of the thermal 
dissipation is given by (a@' /ax )* .  As k is contributed to by u' and w', its maximum 
follows approximately that of u'2 and since e, is essentially contributed to by aw' /ax ,  
one easily understands the origin of the bad spatial correlation between k and e,. 

The turbulent kinetic energy k and its viscous dissipation rate e, are generally 
two key quantities in turbulence modelling. In particular, for computations which 
extend throughout to the wall, the 6,-equation requires boundary conditions. Jones 
& Launder (1972, 1973) have shown that these can be obtained from a kinematic 
relationship between k and e, which in dimensionless form reads e, = 2 ( ~ ? k ~ . ~ / d x ) $  
Our numerical results reproduce this analytical kinematic relationship with a relative 
error of less than 0.1% (Xin 1993). This agreement, which concerns derivatives of the 
primary variables, furthermore indicates that the second-order statistics which have 
been obtained seem reliable. 

Figures 14 and 15 also show that u'w', u'0'  and w" -- are relativelymall since 
their maxima are two or three times smaller than those of uf2, w'* and @I2. Roughly 
speaking, u" - and u" are positive in the near-wall region and negative in the far 
region, while wfO' is negative in the near-wall region and positive in the far region. 
k-e type modelling generally makes use of a Boussinesq-type relationship: u"= 
-v,(ati/az+aiV/ax), u"= - ( v t / o t ) a S / a x  and w"= - (v l /c t )aS/az  where vt is the 
eddy viscosity, cI is the turbulent Prandtl number and the overbarred quantities are 

-- 
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the time-averaged fields. Assuming vt and oI to be positive, the signs of u’w’, u ’0 ’  
and w“ should correspond respectively with those of - (aa/dz +aw/dx), -dG/ax 
and - d 8 / a z .  Our results clearly show that this sign match does not seem to hold. 
Since we have seen that this flow configuration is characterized by the coexistence 
of ‘turbulent’ and laminar regions in the cavity and that the second-order statistics 
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also show that the flow anisotropy is very large, one can conclude that standard 
k-e modelling is not appropriate for turbulent natural convection flows in cavities. 
It is thus necessary to take into account low-Reynolds-number effects but since this 
approach still assumes turbulence to be isotropic, to go further towards second-order 
Reynolds stress modelling as Ince et al. (1992) did. 

3.5. Heat transfer 
For the three Rayleigh numbers considered, time-averaged and spatial mean Nusselt 
numbers (the reference heat flux is L A T I H )  are given in table 2. The value obtained 
at the highest Rayleigh number is in very good agreement with that obtained by 
Paolucci (1990) and Le Quire (1994~). This confirms that the aspect ratio has a 
minor effect on the heat transfer through a cavity with adiabatic horizontal walls. 
The heat transfer thus seems to depend only on the Rayleigh number based on the 
cavity height, at least for aspect ratios in the range 1-4. We have listed in columns 3 
and 4 of table 2 the proportionality constants for the two classical correlations, Ra'14 
for laminar and Ra'13 for turbulent flows. These values show that the Nusselt number 
follows a correlation between R U ' ' ~  and Ra113 but the heat transfer correlation is 
still much closer to Ra'14 than to Ra'13, despite what was, not so long ago, thought 
of as a very large Rayleigh number. Time-averaged local Nusselt number and its 
minimum and maximum envelopes in time (figure 16) show that in the upstream part 
of the boundary layer where the flow is essentially laminar the fluctuations of Nusselt 
number are very small while in the downstream part of the boundary layer we observe 
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RGURE 16. Local Nusselt number distributions and their maximum and minimum envelopes in 

time: Ra = 2 x lo9 (a) and Ra = 10'O (b) .  

- -  - 
Ra Nu Nu/Ra'I4 NulRa'f3 

6.4 x lo8 49.2 0.309 0.0571 
2.0 x lo9 66.5 0.315 0.0528 
1.0 x 10" 101.0 0.319 0.0469 

TABLE 2. Nusselt number and correlation 

very important fluctuations of the local Nusselt number. These large fluctuations are 
due to the large eddies generated in the downstream part of the boundary which 
result in alternative local thickening or thinning of the thermal boundary layer. These 
large eddies also result in an efficient mixing of the outer region of the boundary 
layer and to enhanced fluid transport from the downstream part to the corresponding 
facing upstream part of the opposite boundary layer. Figure 16 also shows that the 
region which sustains large fluctuations of the local Nusselt number increases with 
Rayleigh number and, at Ra = lolo, important fluctuations of Nusselt number are 
observed just above cavity mid-height. However and rather disappointingly, since 
most of the heat transfer occurs in the upstream regions, the large fluctuations in the 
downstream region have little effect on the mean heat transfer coefficient. 

4. Conclusions 
From the two-dimensional direct simulations which were performed in a cavity of 

aspect ratio 4 filled with air for Rayleigh numbers up to lO'O, the following conclusions 
can be drawn: for the Rayleigh numbers considered, the vertical boundary layers 
remain laminar at least over their first half and they then undergo a rapid transition 
just above mid-height resulting from the strong amplification of Tollmien-Schlichting 
waves; the isotherms in the boundary layers show hook-like patterns which correspond 
to large eddies which are ejected into the cavity core; the cavity core remains well 
stratified in the mean and the stratification remains larger than A T / H  at mid-cavity 
height, especially for the highest Rayleigh number investigated; when the Rayleigh 
number becomes large enough, internal waves in the core region get permanently 
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excited and oscillate at the Brunt-Vaisala frequency; even for the largest Rayleigh 
number investigated, second-order statistics - are only significant in the downstream 
part of the vertical boundary layers; uI2 and w*, the kinetic energy k and the 
turbulent viscous dissipation E,  are not very well spatially correlated, but w’2 and 
@ I 2 ,  the turbulent viscous dissipation E ,  and the turbulent thermal dissipation ee do 
show some spatial coherence; the most important contributions to e, and E e  come 
from Jw’/dx and J@’/dx and are found very close to the vertical walls; for Rayleigh 
numbers up to lolo, the mean Nusselt number still follows a Rail4 relationship. 

The present direct numerical simulations also offer a complete data set of time- 
averaged fields and second-order statistics such as turbulent Reynolds stress, variances 
of temperature and velocity components, turbulent kinetic energy, its viscous dissi- 
pation rate, thermal dissipation rate and turbulent heat fluxes. They can be used for 
validating turbulence models developed for weakly turbulent natural convection, both 
for the time-averaged fields and for the second-order statistics. It was clearly shown 
that in the range of Rayleigh values investigated laminar and ‘turbulent’ flows coexist 
in the cavity and that wall and stratification effects result in large flow anisotropy. 
Second-moment closure modelling therefore seems the most promising way to obtain 
realistic and deterministic turbulence models in the present configuration and more 
generally in turbulent buoyant flows along walls. Also, further investigations are 
needed to understand the role of the internal waves on the flow dynamics and their 
implications for turbulence modelling. Owing to the limitations of the present two- 
dimensional direct numerical simulations, future three-dimensional simulations will 
show the importance of allowing for extra degrees of freedom in the third direction on 
the structure of the mean flow and turbulence quantities. Comparisons with solutions 
obtained with turbulence models will then be more meaningful. 

Part of these results were presented by the authors at the joint EUROTHERM 
and ERCOFTAC workshop held in Delft, the Netherlands, in April 1992 and at the 
1st European Thermal Science Conference, Birmingham, UK, September 1992. The 
computations were performed on the VP200 at CNRS CIRCE Computing Center. 
This work is supported by DRET under contract 91-150. One of us (S. Xin) thanks 
CSTB for supporting him. 
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